
Pushing Location Based Media Art to the
Limit

Technical Challenges and Solutions

yvan vander sanden & Zimcke Van de Staey

Mute, Leuven, Belgium

contact: zimcke@mutecode.com — yvan@mutecode.com

Abstract

The current use of location based sound art for mobile devices is quite straightforward. Honourable
exceptions not withstanding, projects often go no further than linking predefined zones to one or
more sounds. While this approach is certainly interesting because of its low entry barrier – even
the most casual listener will instantly understand the correlation between position and sound – it
will not aid us in sustaining interest in this art form for very long.
In our presentation we will discuss a few alternative approaches to sound / location mapping with
more surprising and varying results. This can be attained by indirect interpretation of the GPS
signal itself – as we have done in our LineWalk I application – and also by combining GPS with
the multitude of readily available sensors.
Of course there are some hurdles to be expected: implementing sensor based interaction is no
small task for the digital artist. And to add to our challenges, the mobile market is still highly
fragmented. It’s not enough to write your software just for Android or iOS. This is why we propose
to piggyback on the game industry: game developers use the same means for a different outcome.
While more general software development continues to struggle with delivering Android, iOS
and Windows phone versions of their software, cross platform mobile development in particular is
already quite mature within the gaming industry. And as far as sensors and interface programming
go, there are several game engines available that make it possible with ease. However, there is one
thing missing: imaginative audio support. It would be a shame to go the extra mile when it comes
to being creative with interaction, while at the same time being limited by a sound interface that
will do little more than play sounds at certain locations.
In this matter, the options are limited. LibPD for one can be a useful tool, but it feels a bit like
programming your interface directly in openGL. A more high-level sound engine preferably one
that combines a 3D positioning system, DSP processing, software synths and composition tools
would be welcome. We will finish our presentation with a modest proposal in this direction.

Contents

Introduction 2

1 Sound to Location Mapping 2

1.1 Relative Mapping . 2

1.2 Data Communication . 3

1.3 Not All is New . 4

1

2 Technical Challenges 5

2.1 Cross Platform Frameworks . 6
HTML and Javascript Based Frameworks • Precompiling Frameworks • Native Mode Frameworks

2.2 Game Design Frameworks . 8
Esenthel Game Engine

3 Audio 9

3.1 Imagination . 10

3.2 a Wishlist . 10

3.3 the YSE Sound Engine . 12

4 Conclusion 13

Introduction

Over the past several years, we have seen
many new location based sound art for mo-
bile devices. This led to an extensive re-
search on the artistic possibilities of the ubiq-
uitous sensors available on these devices.

Notwithstanding those efforts of integrat-
ing the sensors in mobile music applications
and the numerous writings on this subject,
the current sound to location mapping ap-
proaches are quite straightforward. The con-
cept used by many applications often solely
consists of linking predefined zones to one or
more sounds. We have made two such appli-
cations for Musica1: Curvices2 (2013) and
Klankroute Maasland3 (2014). And while
this is a fair choice for projects in the touris-
tic domain, there are numerous other designs
possible.

1. Sound to Location Mapping

Linking sounds to zones has the advantage
that, from the perspective of the audience,
it is very easy to understand what is going
on. Current GPS technology on mobile de-
vices is also accurate enough to implement
this with reasonable detail.

On the other hand, the ‘direct’ approach
does not give the user much of a challenge.
There is no room for discovery or surprises,

both of which are an important part of artis-
tic experiences.

1.1 Relative Mapping
More innovative ways to map sounds can be
realised by interpreting the data in a rela-
tive, indirect manner. The GPS sensor can
be used to track the movement of the listener
instead of focusing on the exact location. As
an experiment, we did develop an interac-
tive application that is based on this con-
cept: LineWalk I 4 (2013), as seen in figure
3. The app is a seven- to ten-minute com-
position, during which the listener can pace
back and forth. He is supposed to “walk on
a line”, such as when he or she is waiting for
the bus. The macro structure of the piece
is entirely precomposed, but new sounds will
appear on different locations on the screen.
The listener can decide whether or not to
follow these sounds.

To increase the interactive possibilities in
Linewalk I, we implemented a small software
synthesizer. This greatly improved the flex-
ibility of sound generation on a micro level.
Because the idea was to experiment with dif-
ferent types of user interaction, we imple-
mented the following concepts throughout
the three parts of the composition:

• pitches of continuous sounds can shift by
walking further from the starting point;

1http://www.musica.be/
2http://www.musica.be/en/curvices-rozalie-hirs-music-poetry-voice-cox-grusenmeyer-design-animation
3http://www.klankatlas.eu/routes/klankroutemaasland/
4https://play.google.com/store/apps/details?id=com.mute.linewalkI

Figure 1: Screenshot from Curvices

• areas in which a specific sound is triggered
can grow when the listener stays within
that area;

• sounds can be changed or moved to an-
other position when the listener has them
activated for a certain period in time;

• sound triggers can be numbered, thereby
forcing the listener to engage them in a
particular order;

• different layers of the composition can be
activated by standing on a specific loca-
tion;

• sounds can be placed in the stereo field ac-
cording to their visual appearance on the
screen.

By combining all these concepts together,
we were able to create a complex set of pos-
sible interactions for the listener. But while
this enlarges the reusability of the app, there
is the danger that the interaction will be un-

clear to the listener. We tried to counter this
in two ways:

1. Progress will never halt completely. The
user cannot get ‘stuck’ when he does not
understand the interaction. Instead the
music will continue and the interaction
will (hopefully) become clearer over time.
Whenever the listener comes to under-
stand a specific method of interaction,
he will be encouraged to start the music
again and this time have more impact on
the way the composition evolves.

2. All interactions are visualized in a
straightforward manner because most
people are far better in interpreting im-
ages than sounds. By ensuring a strong
link between the audible and the visual
content, the listener is hinted at the pos-
sible result of his decisions.

1.2 Data Communication
Other ways of extending location based me-
dia art can be realised by using the wireless

3

Figure 2: Screenshot from klankroute maasland

data network on mobile devices. Networked
applications can exchange information with
a server-side component and adapt their be-
haviour accordingly. This gives artists the
ability to define flexible sound works instead
of pre-composed content. Above all this is
an interesting way to create interactivity for
the listeners. An idea that we would like to
work on is an app with movable sound ob-
jects, where a listener can virtually “pick up”
a sound from its original location and release
it somewhere else. When locations are stored
online instead of on the listener’s device, this
approach enables more lasting interactions
with the environment. And because these
interactions are visible to all other listeners,
they have more meaning. It does not have
to end with sound objects either: the same
approach could be used for text, images or
even audio filters.

The approach above can be described as
a closed circuit. A server on the network
interacts with all client applications to ex-

change information. Networked applications
can also make use of more general data that
is available on the internet. The obvious ex-
ample would be the current weather condi-
tions. Other ideas could be the location of
nearby landmarks, altitude differences, pop-
ulation density, vegetation, or basically ev-
ery kind of location based information that
is available online. For the most part, appli-
cation programming interfaces for this kind
of information already exist.

In the near feature, we think that working
with so called ‘big data’ will also be achiev-
able. Possibly an application could also use
the data about the user itself, which is al-
ready gathered by companies like Google and
Facebook5.

1.3 Not All is New
Creating a meaningful musical experience
with this data might be a challenge. But
when we look for ways to interpret all this
data, we’re not really entering uncharted ter-
ritory. An inventory of the possibilities is be-

5After all, advertising companies do it, the NSA does it, our governments do it, so why shouldn’t we?

4

Figure 3: Screenshot from Linewalk I. The green dot symbolizes the position of the listener.

yond the scope of this paper, but they are ac-
tually not that different from the more estab-
lished practise where composers map data
from (movement) sensors to musical expres-
sion. As an example we’d like to refer to the
work done by Kristof Lauwers and Godfried-
Willem Raes at Logos foundation6.

2. Technical Challenges

Developing mobile applications often results
in developing as many applications as you
support platforms. Not only do these plat-
forms use different programming languages,
they also don’t always offer the same possi-
bilities, at least not at programming level.

In Tonal Tools7, we needed to visualize
the notes played on a keyboard while playing
back a midi file, as seen in figure 4. While the
result looks more or lest the same on both
iOS and Android, we needed a very differ-
ent implementation. On Android, we could
use a simple AudioPlayer (check this name)

object to play back a midi file. But once
it is playing, there is no way to keep track
on note on/off events. We had to write our
own midi file parser, extract all note on/off
information and synchronise that with the
AudioPlayer object.

IOS on the other hand provides us with a
callback function which is called every time
a note on / note off event happens. This
makes the visualisation of that event very
easy to implement. But setting up a system
to actually play the midi file is not straight-
forward at all. There is no object like the
Android AudioPlayer to just play the file.
IOS does not even have default midi sounds:
these have to be provided by the software.

This small example shows us just how
different both systems really are. It’s not
enough to just translate code to another lan-
guage: often it takes completely different
code to create an application for both plat-
forms.

But even within one platform things are

6http://logosfoundation.org/scores gwr/Namuda Links/namuda studies.html
7An application for iOS and Android that we’ve created for Musica

5

Figure 4: Tonal Tools includes a keyboard display which is synchronized to a MIDI file player.

not always the same. One version might re-
quire a piece of code to be different from
another version. When Apple introduced
retina displays, developers were required to
adjust their interfaces to the new screensize.
Android als made a lot of changes to their
geolocation system in Kitkat. Most of them
are backwards compatible, but not all. At
the very least, your code will not be optimal
if you don’t review those changes.

Supporting several platforms and keeping
track of changes in all of them takes a lot of
time. Time we’d prefer to spend otherwise, I
am sure. Which is why Mute opted to use a
cross-platform development framework. We
prefer that someone else keeps track of all
those differences and changes, so that we can
focus on the actual application development.

2.1 Cross Platform Frameworks

Given the difficulties and extra workload it
takes to develop applications for multiple

(mobile) platforms, it is no surprise that
cross-platform development frameworks are
getting a lot of attention nowadays. To give
complete listing of available frameworks is
beyond the scope of this article. Also, our list
would surely be outdated in a few months.
Still, a brief overview of the most important
options might be helpful.

2.1.1 HTML and Javascript Based Frame-
works

With the advent of HTML5 and other recent
technologies such as jQuery, modern web-
sites can behave more and more like real ap-
plications. This is why some cross-platform
frameworks do not really create an applica-
tion. All the functionality is created inside a
collection of webpages is packaged so that it
can be viewed locally on a mobile platform.

While this can make development easier,
it also has some important drawbacks. Gen-
erally speaking, the available functionality
is quite limited compared to native applica-

6

tions. The application does not automati-
cally have access to all the features of the
platform.

Equally important in the context of this
paper is that this approach creates really
slow applications. This can be a problem
if you want your audio to do more than sim-
ply start and stop playing. (A slow applica-
tion does not mean that your CPU is playing
golf half of the time, it means that it needs
a lot more time to do calculations. There-
fore, slow applications drain your batteries
faster.)

2.1.2 Precompiling Frameworks

Another approach is to develop in a gener-
alized environment which automatically gen-
erates the correct code for several platforms.
Once you compile that code into a program,
you have an application for the supported
platform. This has the advantage the result
is native code, which performs a lot better
than JavaScript. The user interface elements
will often translate to an iOS element on iOS
and an Android element on Android.

While this seems like a good idea there is,
again, one drawback. If your interface ele-
ments look like the native ones, users will
also expect the application to work like a na-
tive application. But there are a lot more
differences between platforms than just the
shape of the buttons. With iPhone tabs go
on the bottom, but Android tabs are on top.
And Windows 8 scrolls everything horizon-
tally instead of using tabs8. The implication
is that you will end up designing a separate
interface for every platform, which is exactly
the thing you’re trying to avoid.

Another drawback is that the not so ex-
pensive options in this category often take
their time when the target platform changes
its requirements. This may leave you with
no option to publish your app in the store.
More expensive frameworks do not have this
problem but are, well, expensive.

2.1.3 Native Mode Frameworks

Here’s when it gets confusing: mobile devel-
opment uses the word ‘native’ in two differ-
ent contexts. When we discussed the idea
‘native development’ before, we meant de-
velopment with the tools for that particu-
lar platform, like x-code for iOS or eclipse
for Android. But both platforms also have a
‘native mode’. This is the low level software
layer which operates below the high level ob-
jective C (iOS) or Java (Android) interface.
As an example we will briefly show the dif-
ference with figure 5: a diagram of Android’s
internal design.

Android applications (in blue) are writ-
ten in Java, but they rely on the applica-
tion framework and libraries written in C++
code. Native mode applications only have
a placeholder in Java while the real core of
the program sits on the same level as the
library (in green). While the native mode
doesn’t give you easy access to the applica-
tion framework provided by the SDK, it does
have one advantage: you can use the same
programming language on both Android and
iOS. This means a library can be written
that handles the internals differently while
still giving the programmer a single interface,
without any performance loss. And because
the developer can use c++ to create the app,
it is also easy to include other c++ libraries.

A simple function to get the current lon-
gitude on your location might look like this:

double getLongitude() {

#if defined ANDROID

return AndroidsLongitudeFunction();

#else

5 return ApplesLongitudeFunction();

#endif

}

The application developer only has to
know that the function ‘getLongitude()’ ex-
ists and that it will return the current longi-
tude. Whatever happens internally is up to

8http://www.netwhisperer.com/2013/03/27/mobile-app-development-native-vs-cross-platform/

7

Figure 5: The Android architecture9

the maintainer of the library.

These native applications have no access
to the standard user interface objects in An-
droid or iOS, but we think this is actually
an advantage. A problem only arises when
cross platform frameworks try to mimic the
standard interfaces, in which they never suc-
ceed entirely. Doing so creates an expec-
tation from the user: an application that
looks like a standard application should be-
have like one in all circumstances. But in
contrast, if the user interface is entirely dif-
ferent users will not expect it to behave like
a standard application.

Both performance and flexibility are im-
portant for the creation of mobile media art.
This is why we think that the advantages of
using a cross-platform native mode frame-
work greatly outnumber the main disadvan-
tage, namely that access to the application
framework is more difficult. (Note that it is
not entirely impossible!)

2.2 Game Design Frameworks
Native mode frameworks are especially pop-
ular with game designers. This should come
as no surprise: only native mode applications
are capable of accessing the graphics pro-
cessing unit (GPU) directly. Therefore they
are the only way to create demanding vi-
sual software, which is what games often are.
Game engines have been supporting cross-
platform mobile development for a few years
now. And while direct GPU access might not
be overly important to all media art, there
are several other advantages to game engines
from which we might benefit:

• Game development depends a lot of im-
porting resources, like images and sounds.
They mostly have a very efficient pipeline
for this which really saves time during de-
velopment.

• Both Android and iOS support OpenSL
ES in native mode, which is a mobile so-

8

lution for playing and mixing sounds that
is not available through the Application
framework.

• Because of the steep competition, game
designers really want to use the latest tech-
nologies. While more general frameworks
might take a while to implement a new fea-
tures, this is often done within a matter of
weeks by game engines.

• Game engines are a highly competitive
market. Only a few games really generate
a lot of income, and the engine developers
know this. While a cross-platform frame-
work for business applications often cost a
lot of money, game engines are relatively
affordable.

As sound artists we are naturally most oc-
cupied with the audio side of what we create.
But we should not forget that our product is
also a visual one. Whether we like it or not,
the is this GUI, the graphical user interface.

Game designers, always creating a unique
’feel’ for every game, have understood this
very well. When using the standard Android
or iOS interface, it is easy to create an inter-
face that looks OK. But when you want to
create something unique, be it a game or an
art product, OK is not enough. An appli-
cation should engage a user not only with
game mechanics or sound, but also through
its interface. Neglecting the visual side of a
product is a missed opportunity, we think.

2.2.1 Esenthel Game Engine

At Mute, we created quite a few mobile ap-
plications with the Esenthel game engine10.
There are other game engines which are bet-
ter known, but we have quite a few reasons
why we keep using this one:

• The Application Programming Interface is
very logical and well documented. Once
you’re familiar with the basics, develop-
ment in Esenthel is really fast because of
this.

• The built-in code editor has some very
interesting auto-complete functions and
shows relevant documentation while you
type. It even creates your header files for
you, takes care of pointers, includes and
external declarations. Again, this greatly
increases our development speed.

• Everything you do is automatically syn-
chronized over the network. This means
you can work on a windows PC for hours
and after that open up your Macbook and
test your project on iPad in a matter of
minutes.

• Assets (sounds as well as images, video
and 3D models) can be imported with drag
and drop. They will automatically be con-
verted to a usable format. Once imported,
they can even be dragged onto your code
wherever you want to use them.

• Because code is written in C++, almost
every other C++ library can be added to
your project. If you have a source license
you can even add the functionality you
need directly to the Esenthel engine.

• Support is really good. Almost every time
we had a question, a solution was given
by the engine developer within a day. Re-
quests for (small) new features are often
handled within a few weeks.

• The price is the lowest we could find. A
complete source license costs only 13.75
Euro a month. The binary license is only
6.88 Euro a month.

3. Audio

A game engine is a good option for cross-
platform mobile development. It even en-
ables us to use the most flexible audio so-
lution there is on mobile platforms: OpenSL
ES. Unfortunately, this most flexible solution
is not very flexible at all. Here are some lim-
itations:

10http://www.esenthel.com

9

• A hard limit of 32 simultaneous sounds.
This is not much once you start to use
sounds as a software sampler. Even a
monophonic instrument needs at least two
or three sounds to sound natural.

• Sound playback speed is limited from 0.5
to 2.0. This means you cannot create a
software sampler from one sound and have
it cover more than 2 octaves.

• Reverb is not available. We certainly don’t
want to add a reverb to everything, but it
can be useful.

• No MIDI support. Although OpenSL ES
also defines MIDI support, the Android
implementation lacks MIDI.

On top of that, the OpenSL ES interface
is unwieldy at least: it doesn’t come with
lots of examples and only has a primitive C
API. The latter makes your code particularly
prone to errors. Because of this we would
recommend the same strategy as we used
for targeting multiple platforms: let some-
one else worry about it. Or at least we don’t
want to worry about it while we’re working
on an application.

3.1 Imagination
It is our view that art is the realisation of
our imagination. And while there will al-
ways be limits to what is possible, we feel
that the current state of sound programming
interfaces really limits what we can realize.
Hardware development has taken an enor-
mous leap over that last years: we can do
more on a recent phone than was possible on
a computer fifteen years ago.

In general, software development kept up
with that. The game engines mentioned ear-
lier in this article all provide an easy to
use and flexible interface to create software
that uses graphics in new and fascinating
ways. Unfortunately, sound doesn’t seem to
be very important to most companies. Un-
derstandable too, because most sound artists

won’t request much more than playing pre-
recorded audio tracks.

To improve the current situation, sound
artists should think of new ways to work with
sound. But as long as the technology doesn’t
allow for real creativity, this won’t happen.
A much needed improvement of audio pro-
gramming possibilities should go hand in
hand with sound artists working with those
new possibilities.

3.2 a Wishlist
So what exactly would be the ideal sound li-
brary? What features should it contain? As
a programmer creating audio art, we think
that were in a good position to imagine what
wed like to work with.

Firstly, there are some general program-
ming requirements:

• It should be fast. There is no use for a
sound engine which takes up half of the
available CPU power. Preferably all DSP
calculations are divided over all available
processors. This speed requirement is im-
portant, because it rules out all program-
ming languages with automatic garbage
collections.

• It should work on all major platforms,
without application code modifications.
At the very least on Windows, Linux and
Android. Mac and iOS would be nice also,
for as long as they still have a market
share.

• It should be understandable without look-
ing at the documentation all the time. If
you look at a function’s name and it’s not
clear what it’s supposed to do, the func-
tion name is badly chosen. On the other
hand, documentation must be extensive
and there should be plenty of tutorials.

• Frequently used concepts should be ready
for use. I do not want to be able to create
a looping sound object that can be played
at variable speed, I want to be there.

10

The same goes for mixing channels, reverb
and most established DSP functions. You
would think this goes without saying, but
everyone who has used Pure Data knows
that even for starting and pausing a sim-
ple sound you have to put in an extra ramp
object to avoid audio clicks. Since we all
need to do that, I think it would be better
to implement that sort of thing right away,

at the engine level.

• It should be easy to use right, and difficult
to use wrong.

While the last one is an established pro-
gramming mantra, Were still surprised how
complicated most existing sound engines are.
As an example, here is the recommended way
to initialize the FMOD sound engine:

UInt version;

_errorCheck(_system->getVersion(&version));

if (version < FMOD_VERSION) Exit("FMOD: outdated fmod dll.");

5 // get the number of available audio drivers

_errorCheck(_system->getNumDrivers(&_numDrivers));

if (_numDrivers == 0) {

// continue without sound

_errorCheck(_system->setOutput(FMOD_OUTPUTTYPE_NOSOUND));

10 } else {

// revert to default driver if the ID is not right

if (driverID > _numDrivers) driverID = 0;

// Get driver info

15 _errorCheck(_system->getDriverCaps(driverID, &_caps, 0, &_speakermode));

// Set speakermode

_errorCheck(_system->setSpeakerMode(_speakermode));

if (_caps & FMOD_CAPS_HARDWARE_EMULATED) {

20 _errorCheck(_system->setDSPBufferSize(1024, 10));

}

// something wrong with sigmatel audio drivers

_errorCheck(_system->getDriverInfo(driverID, _driverName, 256, 0));

25 if(strstr(_driverName, "SigmaTel")) {

_errorCheck(_system->setSoftwareFormat(48000, FMOD_SOUND_FORMAT_PCMFLOAT, 0, 0,

FMOD_DSP_RESAMPLER_LINEAR));

}

}

30 // try initializing the sound system

FMOD_RESULT r = _system->init(1000, FMOD_INIT_NORMAL, 0);

// if something went wrong, revert to play stereo mode

if (r == FMOD_ERR_OUTPUT_CREATEBUFFER) {

35 _errorCheck(_system->setSpeakerMode(FMOD_SPEAKERMODE_STEREO));

_errorCheck(_system->init(1000, FMOD_INIT_NORMAL, 0));

}

_system->set3DSettings(_dopplerscale, _distancefactor, _rolloffscale);

11

This should be enough to scare away ev-
eryone but the most proficient programmers.
And even those will have to program with
a manual on a second screen. We think it
should be something like this:

SOUND::System.init();

If a programmer is not satisfied with the
default options, he should be able to change
those. Reasonable defaults go a long way
though. If, like in the example above, some-
thing is known to be wrong with sigmatel
audio drivers, this should be handled by the
engine, not by the application programmer.

With these programming requirements in
mind, we can move on to the audio features.
In general, there are several categories of
sound manipulation that can contribute to
the way we’d like to work with audio:

• 3D sound positioning. We would like to
position and move sounds in a virtual
world. This can be interesting for loca-
tion based sound art, but it also opens up
possibilities for many other concepts we’re
working on. In general, this is what sound
engines for games use.

• Low level DSP functionality. We’d like to
be able to manipulate every audio stream
at sample level. Pure Data is a good ex-
ample of software to do this kind of thing.

• Software synths and MIDI support. While
sound positioning and manipulation is
very interesting, we still believe in motives,
melodies and chords. (Although not neces-
sarily in a conventional way.) The idea of
a playing instrument which you can give
instructions still has merit. Sequencers
and dedicated software synths aside, this
functionality is non existent in most sound
software.

• Macro structure (or composition) func-
tions. Most sound libraries are occupied
with the ’here and now’. We think it could
be very interesting to include functions

that define how sound evolves on a larger
scale, directly into the sound library. This
kind of functionality can be found in pro-
grams like GMT and the Composers Desk-
top Project.

Needless to say we have not found a sound
library that can do all of this. And while
it is not impossible to work with several li-
braries together in your software, doing so
is quite complicated. You will need to com-
pile every library for all targeted platforms,
compile their dependencies and write a lot of
functions just to pass data from one library
to another.

Nonetheless, when new and innovative au-
dio art is our goal, we will gain a lot from an
easy to use library which has all this to offer.

3.3 the YSE Sound Engine
Last year we started development on a new
sound engine: YSE. With the list above in
mind, we think that even a partially com-
pleted engine can help us create audio in
ways we are not able to do today.

Since we want a fast library, but with an
easy to use syntax, we didn’t write it in C.
While C does the fastest code in most cir-
cumstances, it isn’t the easiest language for
everyday use. As a compromise we used
C++11. This allows us to use C code for the
most crucial parts of the engine, while still
providing a solid and easy to use interface.

Because we are also working on the Attr-X
project (a virtual online world about sound
manipulation) we started with 3D sound
placement and sound synthesis. At the end
of the year we had a first stable version avail-
able which is already implemented in Attr-X.

This first version of our library only sup-
ports Windows, Mac and Linux. But now
that we get more and more involved in mo-
bile projects we made a lot of changes to have
it compile on Android and iOS. This stage is
also nearly done. We have not published a
stable release just yet, but that is a matter
of a few months at most.

12

Right now, the following features are im-
plemented:

• 3D positioning of all sound objects and ef-
fects.

• Nearly all functionality provided by
commercial sounds engines for gaming.
(Doppler effect, reverb, rolloff scaling,
sound virtualization, etc.)

• Flexible speaker setup. Contrary to gam-
ing solutions we are not only interested on
playing audio on a home surround system.
Audio installation art can require any pos-
sible speaker setup. With YSE you can ad-
just all speaker positions. All 3D sounds
will be outputted to the correct speakers,
according to their position.

• Basic DSP functions, comparable to the
vanilla version of Pure Data. DSP objects
can be used as a sound source in a 3D envi-
ronment, as well as a sound filter attached
to a sound, a channel or a location in 3D.

• Full resource management. You don’t
have to worry about acquiring and releas-
ing memory. Also, sound files that are no
longer used will be erased from memory by
the engine.

• Audio calculations are spread out over
multiple cores. The library is completely
lock free for the best performance.

Some stress tests were done on a Windows
8 pc with a quad core i7 processor. With
this set-up the engine can render about 2500
sounds simultaneously11. With virtualiza-
tion turned on, we can have 80.000 sounds in
memory, moving around in a 3D space and
have the engine play the 100 most important
ones. On a Nexus 5 mobile phone with an-
droid 4.4, we were still able to play about
700 sounds at the same time.

While our implementation is far from com-
plete we do think some of the hardest work
is done now. We will continue to work on
more advanced functionality, adding soft-
ware synths and macro functions, but at the
same time, we expect to release our first soft-
ware based on the engine this year.

YSE is open source, released with the
Eclipse license. This means it can be used by
other open source projects, as well as in com-
mercial products. We hope that by sharing
the source, contributions and improvements
will follow over time.

4. Conclusion

Location based media art is emerging for a
few years now. We think that projects often
use only a few of the available techniques
to create an engaging user experience. If
we want to keep our audience’s attention,
we will have to keep innovating. But inte-
grating new technologies, complicated inter-
actions and engaging interfaces requires a lot
more programming. On top of that, the au-
dience is divided over several platforms, the
most important ones being Android and iOS
right now. This too requires extra work from
the programmer.

Because of these reasons we think it is best
to use an integrated, cross-platform toolkit
for development. And although none of them
is specifically intended for art projects, game
engines offer much we can use.

If a game engine can be used in combina-
tion with a sound engine that opens up new
ways of working with audio, artists will be
able to create even more new and innovat-
ing mobile art projects. And because such
an engine does not exist, we’ve set a modest
first step in developing one, hoping to inspire
others to work with us.

11Of course we never intend to actually play that much sounds at the same time. This merely shows that
there is plenty of headroom to do other calculations in our software.

13

	Introduction
	Sound to Location Mapping
	Relative Mapping
	Data Communication
	Not All is New

	Technical Challenges
	Cross Platform Frameworks
	HTML and Javascript Based Frameworks
	Precompiling Frameworks
	Native Mode Frameworks

	Game Design Frameworks
	Esenthel Game Engine

	Audio
	Imagination
	a Wishlist
	the YSE Sound Engine

	Conclusion

